Ammonia synthesis from first-principles calculations.
نویسندگان
چکیده
The rate of ammonia synthesis over a nanoparticle ruthenium catalyst can be calculated directly on the basis of a quantum chemical treatment of the problem using density functional theory. We compared the results to measured rates over a ruthenium catalyst supported on magnesium aluminum spinel. When the size distribution of ruthenium particles measured by transmission electron microscopy was used as the link between the catalyst material and the theoretical treatment, the calculated rate was within a factor of 3 to 20 of the experimental rate. This offers hope for computer-based methods in the search for catalysts.
منابع مشابه
Toxic Gas Remediation by Graphene Oxide Nanosheets
Deemed the worlds largest environmental health issue, air pollution has been shown to be a more potent danger than previously thought. Increasing concern regarding major gas pollutants nitrogen dioxide (NO2), ammonia (NH3), and ozone (O3) has sparked research in the field of gas adsorption as a method to remove these gases from the atmosphere. Using first principles calculations based on the De...
متن کاملLow‐T Mechanisms of Ammonia Synthesis on Co3Mo3N
Dispersion-corrected periodic DFT calculations have been applied to elucidate the Langmuir−Hinshelwood (dissociative) and an Eley− Rideal/Mars−van Krevelen (associative) mechanism for ammonia synthesis over Co3Mo3N surfaces, in the presence of surface defects. Comparison of the two distinct mechanisms clearly suggests that apart from the conventional dissociative mechanism, there is another mec...
متن کاملFirst-principles modelling of Earth and planetary materials at high pressures and temperatures
Atomic-scale materials modelling based on first-principles quantum mechanics is playing an important role in the science of the Earth and the other planets. We outline the basic theory of this kind of modelling and explain how it can be applied in a variety of different ways to probe the thermodynamics, structure and transport properties of both solids and liquids under extreme conditions. Afte...
متن کاملDetection of Ammonia and Phosphine Gas using Heterojunction Biomolecular Chain with Multilayer GaAs Nanopore Electrode
This paper presents Density Functional Theory and Non-Equilibrium Green’s Function based First Principles calculations to explore the sensing property of Adenine and Thymine based hetero-junction chins for Ammonia and Phosphine gas molecules. This modeling and simulation technique plays an important and crucial role in the fast growing semiconductor based nanotechnology field. The hetero-juncti...
متن کاملA First-Principles Study on Interaction between Carbon Nanotubes (10,10) and Gallates Derivatives as Vehicles for Drug Delivery
First principles calculations were carried out for investigation the novel 7-hydroxycoumarinyl gallates derivatives in gas and liquid phases using density functional theory (DFT) method. Computational chemistry simulations were carried out to compare calculated quantum chemical parameters for gallates derivatives. All calculations were performed using DMol3 code which is based on DFT. The Doubl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 307 5709 شماره
صفحات -
تاریخ انتشار 2005